Machinery Management Services to Improve Reliability, Plant Safety & Return on Investment

Manjul N Saxena, Principal Engineer, GMC, Australia

© This document is property of Global Machinery Consultants Pty Ltd., Australia. A.C.N No. 094 649 699, A.B.N. 20 094 649 699. Tel: + 61 456 980 655 E-mail: <u>manjuln_saxena@hotmail.com</u>

Manjul N Saxena – Global Machinery Consultants Pty Ltd.

32 years of machinery design, engineering, erection, commissioning and maintenance experience - a global career spanning across India, Australia, Japan & UK:

- 1. Erection / Commissioning of IPCL MGCC (Now Reliance), Nagothane
- 2. Exxon-Mobil, Bass Strait, Australia facilities Troubleshooting fleet of 70 machinery trains
- 3. Al-Shaheen Offshore platforms FEED Compressors, Pumps, Expanders & Turbines
- 4. Exxon-Mobil PNG LNG Early Concept Study (led to the development of \$20B project)
- 5. Ichthys LNG (INPEX) led Concept, FEED & Early Engineering of Machinery (\$50B project)
- 6. BP, UK Machinery Troubleshooting & Design Review <u>Worldwide</u> 6 of the 8 regions

Classifying Operational Risk?

Risk is any known or unknown threat which can affect the business bottom line / profitability, reputation and in the worst case can potentially wipe out the business.

Known risks of business are:

- Varying cost of finance (interest rates)
- Varying cost of energy input etc.
 Known-unknown: (timing unknown)
- Floods,
- Earthquakes,

Unknown-unknown risks are:

- Accidents due to either
 - Man-made events example uncontrolled process conditions
 - Unknown operating conditions usually occurring in the plant equipment example surge or short circuit or sudden increase in unbalance.

Unknown machinery operating conditions potentially carry the biggest operating risk.

We can support the process of identification of Risk

We have supported well-known engineering analyses used in the plant design across many projects worldwide – 3 LNG Trains, FPSOs (after 5 years of it being in Operation), Offshore platforms, Refineries & Petrochemicals:

- 1. Hazop (Hazardous Operation Analyses) / HAZID (Hazard Identification)
- Safety Integrity Level (also called SIL) Analysis or LOPA Layer of Protection Analysis to ascertain whether the instrumentation installed to ensure safe operation can achieve its functionality and with what degree of reliability.
- 3. SIMOPS Simultaneous Operation assessment to evaluate safe facility operation.

What are the machinery challenges?

Rotating machinery is designed for 20 years of life, from 4 to <u>8</u> years of continuous operation before any major servicing overhaul and require availability above 90% of the time.

Some challenges are given below.

High power density - gas compressors of power demand > 30,000 to 100,000 kW-hr	This is equal to the combined maximum power generated by 50 to 150 Formula-1 (F1) racing cars
Continuous rotational speed @ 15000 rpm	F1 cars achieve this speed for a few minutes
Balance to less than 25 microns vibration	Human hair is @ 75 microns thick
Impeller tip speed of 300 m/s	Bullet speed is 550 m/s
Controls suitable to overcome surge which can destroy machine in seconds.	

Machinery Risk contd.

Power consumption in a 5 million tons per annum capacity LNG plant. Obviously, with 87% of the power consumed, the reliability of the process compressors is critical.

© This document is property of Global Machinery Consultants Pty Ltd., Australia. A.C.N No. 094 649 699, A.B.N. 20 094 649 699. Tel: + 61 456 980 655 E-mail: <u>manjuln_saxena@hotmail.com</u>

Machinery Risk contd.

Process compressors are expensive and it is uneconomical to install a spare. Hence, the reliability of the design of these machines is paramount. Unscheduled downtime is expensive:

- Trip of the main process compressor in an Ethylene plant of 400,000 tons per annum capacity may result in the flaring of \$500,000 of the plant inventory.
- Losses from 1 month downtime of the main compressor(s) in an LNG plant can be in excess of 100 million dollars.
- Trip of the Main Oil Pumps at an Offshore platform producing 100,000 barrels of oil daily would result in a loss of \$5 million per day at the Oil price of \$50 per barrel.

What we offer - Upgrades & Operational Machinery Support Services

- Thermodynamics
 - Pumps selection, power calculations, footprint, performance
 - Compressors selection, power calculations, footprint, performance
 - Compressors selection, power calculations, footprint, performance, auxiliaries.
- Dry Gas Seals and seal support system- engineering & troubleshooting
- CFD Computational Fluid Dynamics with associate partners
- Compressor Controls with associate partners
- Review of Vibration signatures collected by third parties and provide additional Analysis
- Rotor dynamics
 - Review of third party reports and provide observations
 - Rotor dynamics modelling and analysis with with associate partners
- Compressor & Turbine Hardware
- Bearings and lube oil system design, review and trouble shooting

Mitigating Machinery Risk – Design Stage

Machines are designed for specific process conditions 4-stages of checks and tests:

Verification of supplier's experience to manufacture and supply similar machines

Desk top design analyses Standard quality control testing during manufacturing cycle

Specialised testing in the supplier shop to mitigate field risk

© This document is property of Global Machinery Consultants Pty Ltd., Australia. A.C.N No. 094 649 699, A.B.N. 20 094 649 699.

Tel: + 61 456 980 655 E-mail: manjuln saxena@hotmail.com

Engineering Review of Supplier's Experience

Experience of multiple suppliers are reviewed

Impeller: Verification of non dimensional values

vs flow coefficient

Main rotor design verified to

Mach Number (tip speed/inlet sonic speed) Head coefficient (ability to develop pressure)

Tip speed (stress developed)

Predict unbalanced forces Ability to dampen the unbalanced forces

© This document is property of Global Machinery Consultants Pty Ltd., Australia. A.C.N No. 094 649 699, A.B.N. 20 094 649 699.

Tel: + 61 456 980 655 E-mail: manjuln saxena@hotmail.com

2nd Stage of Risk Mitigation

For new designs (step change), desk top design studies are carried out to assess

- a. Thermodynamic performance of the machine using Computational Fluid Dynamics (CFD),
- b. Finite Element Analysis (FEA) to check parts response to various forces and stresses.
- c. Rotor dynamic analyses is carried out of all the process compressors including rotor lateral analysis, Train Torsional and transient condition analysis e.g. short circuit
- d. Dry gas seal assessment including utility consumptions, alarms and trips review for safety
- e. Lube oil system review for suitability for new operating conditions
- f. Journal and thrust bearing design assessment
- g. Control system including surge control system review
- h. Couplings and driver assessment

4th Final Stage of Risk Mitigation

In addition to the routine quality control tests (example radiography of welds), customised test can cost upwards of a million dollars and take weeks to conduct. They include:

- PTC 10, Type 1 compressor performance test in the supplier shop,
- Full load string test to verify train rotor behaviour, if possible.
 Field Performance Test

© This document is property of Global Machinery Consultants Pty Ltd., Australia. A.C.N No. 094 649 699, A.B.N. 20 094 649 699. Tel: + 61 456 980 655 E-mail: <u>manjuln_saxena@hotmail.com</u>

Example: Thermodynamics compressor calculations - LNG

MR Compressor - LP+MP+HP for 5MMTPA LNG Train

			GE AGAA	AGAA		XXX AGAA	AGAA	
INPUT	DESCRIPTION	UNIT	LP casing (K02) MR	MP casing (K03) MR	casing (K04) MR	LP casing (K02) MR	MP casing (K03) MR	casing (K04) MR
m	Rated Inlet Mass Flow	Ka/Hr	1160000.0	1160000.0	1160000.0	1160000.0	1160000.0	1159632.0
MW _{gas}	Molecular Weight of Gas (Refer gas property calc)	Kg/Kg-mol	26.29	26.29	26.29	26.29	26.29	26.29
C _p (gas)	Average Specific heat ratio of gas	kJ/Kmol K	50.37	51.50	51.50	50.37	51.50	51.50
P ₁ (gas)	Suction Pressure	Краа	352.0	2072.0	3682.0	352.0	1801.0	3442.0
T₁ (gas)	Suction temperature	Deg. K	238.5	317.0	317.0	238.5	317.0	317.0
P ₂ (gas)	Discharge Pressure	KPaa	2122.0	3700.0	5900.0	1852.0	3500.0	5900.0
71	For P1 T1 soloot 71	Lee-Kesler-	0.063	0.013	0.842	0.063	0.024	0.850
01	Actual inlet flow	m ³ /br	239239	51215	26579	239239	59631	28703
Erame	Erame number - refer engg notes		MCI 1404	BCI 1003	BCL 804	88M4	60M5	60M4
n		01 1 1 0 0	0.000	DOL 1000			001013	001014
Пр	Polytropic Efficiency	% / 100	0.860	0.890	0.870	0.869	0.845	0.866
Nnom	Nominal RPM	RPM	3528	3528	3528	3528	3528	3528
Dnom	Nominal Impeller Diameter	mm	1492.0	1060.0	810.0	1410.0	890.0	871.0
r _p	Compression Ratio	P ₂ /P ₁	6.028	1.801	1.606	5.261	1.939	1.718
ĸ	$C_p / (C_p - 8.314)$		1.198	1.193	1.192	1.198	1.193	1.192
T ₂	Discharge Temperature °C		63.69	79.70	73.12	53.93	86.74	77.64
Z ₂	For P_2, T_2 select Z_2	Ploecker	0.936	0.898	0.829	0.938	0.909	0.835
Za	Average compressibility	(Z1+Z2)/2	0.95	0.91	0.84	0.95	0.92	0.84
ka	Average Specific heat ratio	same as k	1.198	1.193	1.192	1.198	1.193	1.192
n _a	Average Polytropic Exponent	same as n	1.238	1.222	1.228	1.234	1.236	1.229
Hp	Head developed	KNm/Kg	153.59	56.36	41.46	139.92	64.84	48.08
Stgn	Number of stages		4	3	4	4	5	4
N _{oper}	Operating RPM ²	rpm	3525.60	3419.28	3424.82	3482.46	3510.14	3516.19
PWRs	Total shaft power + losses	kW	58392	20704	15582	52642	25088	18151
TOT PWR	Total power including all stages+10% margin				104146.15			105468.96
u	Calculated Impeller Tip speed =	m/sec	275.61	195.81	149.63	260.46	164.41	160.90
φ	Flow coefficient		0.138	0.085	0.099	0.166	0.163	0.083
V ₂	Discharge Volume from last Impeller		56023.39	31637.35	18071.50	62329.97	34902.13	18481.36
Suc Flange	Size of Suction Flange - Diameter	1750.0	800.0	600.0	1650.0	900.0	600.0	

© This document is property of Global Machinery Consultants Pty Ltd., Australia. A.C.N No. 094 649 699, A.B.N. 20 094 649 699. Tel: + 61 456 980 655 E-mail: <u>manjuln_saxena@hotmail.com</u>

E.g. - Thermodynamics calculations – Pipeline Compressor

Machine Co	nfiguration		TANAP
INPUT	DESCRIPTION	UNIT	Guarantee case
		SM3/hr	
Std	Flow through Comprosper	101.3 kPaa	655000
volume	Plow Infough Compressor		633000 518333 F
	Malagular Weight of Coo		316322.3
	Refer gas property calc)	Kg/Kg-moi	18.68
Pc (gas)	Critical Pressure of Gas (Refer gas property calc)		4596.64
TC (gas)	Childar rempeperature of Gas (Refer gas property calc)		208.10
C _{p1} (gas)	Specific Heat at cons. pres. of Gas (Refer gas property calc)	K@15deg C	38.43
C _{p2} (gas)	Specific Heat at cons. pres. of Gas (Refer gas property calc)	K@100deg C	43.80
C _p (gas)	Average Specific heat ratio of gas	kJ/Kmol K	41.11
P₁ (gas)	Suction Pressure	Краа	6950.0
T₁ (gas)	Suction temperature	Deg. K	302.1
P ₂ (gas)	Discharge Pressure	KPaa	13150.0
Z1	For P1, T1 select Z1 Compressibility from charts	LKP	0.860
R	8314/MWgas		445.075
Q1	Actual inlet flow	m ³ /hr	8623.78
SELECT CO	MPRESSOR FRAME FROM TABLE 2 OF FILE		T
Frame	Frame number - refer engg notes		Frame A or B
	Frame	Elliott	25MB or 32MB
	Frame	MDT	RB 28 or RB 35
Qnom	Nominal inlet Volume Flow	M ³ /Hr.	10050
H _{pnom.}	Nominal Polytropic head per stage	KNm/Kg	30.00
n p	Polytropic Efficiency	% / 100	0.830
Nnom	Nominal RPM	RPM	9505
Dnom	Nominal Impeller Diameter	mm	467.0
r _p	Compression Ratio	P ₂ /P ₁	1.892
k	C _p / (C _p - 8.314)		1.253
T ₂	Discharge Temperature °C		79.88
Z ₂	For P ₂ ,T ₂ select Z ₂ Compressibility from chart	LKP	0.851
Total Polytre	opic Head		
Hp	Za*8.314*T1n(r _p ^(n-1/n) -1)/ {MWgas (n-1)}	KNm/Kg	79.36
Stgn	Number of stages: Round of to next higher integer		3
Noper	Operating RPM = N _{nom} (H _p /H _{pnom} *no. S _{tgn}) ^{1/2}	rpm	8925
PWR _{loss}	Mechanical Losses from table3 + gear box losses	%/100	0.030
Power Cons	sumption for gas Compression		
PWRg	Power consumed in Kw = m*H _p /(3600*n _p)	kW	13766
PWRs	Total shaft power including 3% losses	kW	14179
u	Tip speed	m/sec	232.42
Suc Flange	Size of Suction Flange - Diameter	mm	400.0
Suc. Vel.	Inlet suction Velocity	m/sec	19

© This document is property of Global Machinery Consultants Pty Ltd., Australia. A.C.N No. 094 649 699, A.B.N. 20 094 649 699.

Tel: + 61 456 980 655 E-mail: manjuln_saxena@hotmail.com

Mitigating Risk through studies at Design Stage

A desk top study can cost tens of thousands of dollars and special machinery tests can cost a few million dollars each.

The decision to carry out various studies and tests has to be judiciously taken based on the past experiences and engineer's judgement of the amount of risk. Specialist knowledge of many experts is required.

For example in the case of the cryogenic turbines, costing @\$12 million for Woodside LNGIV project, increasing LNG plant throughput by 5%, NPV of profits generated > \$150 million; some of the specialist engineering studies and test that were carried out were:

- 1. Turbine geometry CFD analysis
- 2. Warm out chamber analysis
- 3. Rotor overspeed stress analysis etc. and generator rotor high speed balancing

Compressor Casing FEA studies – 25,000 kW duty

Compressor nozzle and casing mesh to analyze stresses and moments generated under worst design case can be done. The casing is also analyzed to study O-ring relief under pressure. Values hidden.

All pictures Courtesy MAN-ES

Compressor Rotor Dynamics studies

-0.5

-1

-1.5

Axial Location, in

ODS 4650 rpm Max 1.67 mils pl

Courtesy RMA Inc. - XLROTOR

forward ----- backwar

d

80

60

Upgrade to Dry Gas Seals in Compressors

Reduce gas flaring, change from wet oil seals to dry gas seals to save ~\$2000 /day /compressor casing at gas price of ~\$8 per mmbtu. Improve Compressor uptime by 1.5 days per year. 4 Options available

© This document is property of Global Machinery Consultants Pty Ltd., Australia. A.C.N No. 094 649 699, A.B.N. 20 094 649 699. Tel: + 61 456 980 655 E-mail: <u>manjuln_saxena@hotmail.com</u>

Compressor Journal Bearing design review

Bearing Diameter	152.4	mm
Pad (Mach.) Diametral CIr	0.3048	mm
Bearing Outer Diameter	198.12	mm

Pad	Pad	Pad Load	Pad Load	Resultant	Diam Pad	Diam Pad	Pad Inlet T	Pad Inlet	Pad Outlet T	Pad Outlet	Groove T
Number	Rotation	Normal	Tang.	Preload	Ср	Cb		Flow		Flow	
	rad	N	Ν		mm	mm	Deg. C	liter/min	Deg. C ^{Ent}	er your email liter/min	address Deg. C
1	0.000848	68076.15	0.017349	0.5	0.96	0.48	99.3	157.563	121.9	96.469	74.1
2	0.001431	34940.92	0.029182	0.5	0.96	0.48	80.0	226.381	95.5	158.936	76.4
3	0.001111	13630.21	0.018929	0.5	0.96	0.48	72.1	325.73737	81.6	261.89059	72.1

Courtesy RMA Inc. - XLROTOR

An example of thrust bearing film thickness calculation and oil temperature analysis

1

Bearing Geometry	Side A	Side B
Bearing Type	Flooded	Flooded
Outer Diameter (mm)	177,8	177,8
Inner Diameter (mm)	88,9	88,9
Area (cm ²)	158,3	158,3 🥖
Number of Shoes	6	6
Pad Pivot Offset	50	50
Pad Material	Chrome Copper	Chrome Copper
Sign Convention for Load	+ Load	- Load

Oil Properties	
Lubricant	ISO VG 46
Oil Viscosity cSt @ 40°C	41,5
Oil Viscosity cSt @ 100°C	6,1
Specific Gravity °API	28,7

100	Shaft Speed	Shaft Speed	Bearing Load	Projected Load	End- Play	(Oil Flow liters/min)		Oil Inlet Temp.	Oil Outlet Temp.	Power Loss	Minimum Film	75/75 Temp
	(rpm)	(m/sec)	(kN)	(MPa)	(mm)	Side A	Side B	Total	(°C)	(°C)	(kW)	(mm)	(°C)
nom.	3600	25,1	38,00	2,40	0,165	15,0	15,0	30,0	50,0	55,9	5,3	0,020	82,9
API	3600	25,1	76,00	4,80	0,165	15,0	15,0	30,0	50,0	56,6	6,0	0,012	91,6
accid.	3600	25,1	100,00	6,32	0,165	15,0	15,0	30,0	50,0	56,8	6,2	0,009	95,4

Analysis to reduce bearing pad temperature and ensuring film thickness above 8 microns at maximum load. Courtesy: Kingsbury Inc.

Assess Operational Risks

Operating plants have their day to day risks. Managers / engineers have to judiciously allocate cost to various maintenance disciplines in an effort to reduce downtime, enhance reliability, safety and profits.

Gas Turbine Driven Compressor Component Downtime Analysis Sample 20+ compressors, Time over 5 years

© This document is property of Global Machinery Consultants Pty Ltd., Australia. A.C.N No. 094 649 699, A.B.N. 20 094 649 699. Tel: + 61 456 980 655 E-mail: manjuln_saxena@hotmail.com

Improve Gas Turbine Operational Efficiency

Turbine Inspection and Overhaul Program

#	Scope of work	к	(=1000) hours of opera	tion
		8K	16K	24/30/48K ^{*1}
1	Site Test, Package Safety Functionality Test, Fleet Program			
2	Periodic shutdown checks, inspection and overhaul,			
2.1	Pre-shutdown checks	х	x	×
2.2	Shutdown checks	×	×	×
2.3	Service Overhaul			
	 a) Visual inspection Program b) Life assessment of soft parts c) Inspect all air filter elements d) Gas Generator and Power Turbine: ⑦ Borescope, ⑦ Water wash GG after inspection, ⑦ Sample analysis e) Package items functional test 	×	×	×
3	Power turbine (hot gas path) overhaul in supplier shop			×

Notes: *1. The third inspection/ major overhaul of the turbine hot gas path. This may be done after 24000, or 30000, 0r 48,000 or 64,000 hours of operation based on the type of turbine (industrial / semi-industrial / aero-derivative). The scope of supplier shop overhaul is based on the inspection report.

© This document is property of Global Machinery Consultants Pty Ltd., Australia. A.C.N No. 094 649 699, A.B.N. 20 094 649 699. Tel: + 61 456 980 655 E-mail: manjuln_saxena@hotmail.com

Alarm & Trip Rationalization – Bringing best practices

(Steam or Gas) Turbine	Driven Equipment
Actuation Systems	Dry gas or Mechanical seal system
Transmission	Control system including surge control
Starting	Vibration (Driver & Driven)
Fuel supply & Control	Lube oil system (Driver & Driven)

© This document is property of Global Machinery Consultants Pty Ltd., Australia. A.C.N No. 094 649 699, A.B.N. 20 094 649 699. Tel: + 61 456 980 655 E-mail: manjuln saxena@hotmail.com

Upgrade Compressor & Turbine Controls

Our study showed Control systems are responsible for more than 12% of machinery downtime. With the improvement in the control cards design and their flexibility we can provide this <u>Open Platform</u> ECT solution through GMC/Nilrekha:

- Change to modern compressor controls to:
 - Control and respond to surge events
 - Multiple compressor train load share
 - Parallel Operation
 - Series Operation
 - Manage performance
- Mount control cards in the control room in the existing DCS / ICSS platform

Machine Controls Upgrades – Support from ECT

- Organizational Focus on Technology Development and Project Delivery
 - ECT TurboPAC[®] Apps Application Software Modules installed in open platform
 - Surge/Performance/Speed/extraction/load sharing Apps
- SECURE, RELIABLE PROVEN Control Technology
- OPEN PLATFORM
- Capex & OPEX Saving Proven across a range of compressor suppliers

Future risks for the Oil & Gas Industry:

Before 2006, project viability was assessed for oil price of \$20/ barrel, now @ \$40/ barrel. In 2000, US Henry Hub gas price was \$5 per MMBTU but in 2021 LNG was sold at \$10-30 per MMBTU. Before the Shale Oil & Gas revolution, OPEC controlled 73% of the global 1.7 trillion barrels of the oil reserves. Now US shale oil reserves alone are estimated at 3.5 trillion barrels. The political implications are huge & countries has to ascertain its role.

Last year USA produced about 13% of its electricity demand from renewable (Wind & Solar) energy. Over the next 10 years by 2030 the renewable may take centre stage and meet about 30% of the global energy demand. Price may remain volatile, force companies to cut operating cost and could lead to higher risk of incidents in the Oil & Gas industry. Technological improvements in the design analysis of Machinery condition could reduce that risk.

Suggestions, Observations & Thanks:

Given many plants were built before 2000 there are many opportunities for the Businesses / Industry to upgrade their machinery to improve their profitability.

Understanding, quantifying and managing machinery risk in one's own area of business will help every manager and engineer to improve their bottom line. <u>We can help in identifying and mitigating that risk.</u>

I wish the you all the very best. Thank you for the opportunity. We look forward to be of service to your company.

© This document is property of Global Machinery Consultants Pty Ltd., Australia. A.C.N No. 094 649 699, A.B.N. 20 094 649 699. Fel: + 61 456 980 655 E-mail: <u>manjuln_saxena@hotmail.com</u>